Block Flow Diagram: Difference between revisions

From processdesign
Jump to navigation Jump to search
 
(57 intermediate revisions by 4 users not shown)
Line 1: Line 1:
Title:  Block flow diagram
<br>


Authors: Nick Pinkerton, Karen Schmidt, and James Xamplas
Author: Nick Pinkerton, Karen Schmidt, and James Xamplas (ChE 352 in Winter 2014) 


Date Presented: January 15, 2013  /Date Revised: January 18, 2013
Steward: David Chen, Fengqi You


Date Presented: February 2, 2014
<br>
<!-- Table of Contents -->
__TOC__


==Introduction==
==Introduction==
Block Flow Diagrams, BFDs, are process flow models used to simplify and understand the structure of a system. BFDs are the simplest form of the flow diagrams used where blocks can represent anything from a single piece of equipment to an entire plant. For a complex process, block flow diagrams can be used to break up a complicated system into more reasonable principle stages.
A block flow diagram (BFD) is a drawing of a chemical processes used to simplify and understand the basic structure of a system. A BFD is the simplest form of the flow diagrams used in industry. Blocks in a BFD can represent anything from a single piece of equipment to an entire plant. For a complex process, block flow diagrams can be used to break up a complicated system into more reasonable principle stages/sectors.


==Overview==
==Overview==
===Uses===
===Uses===
BFD's are a useful tool for reports, textbooks and presentations when a detailed process flow diagram is too cumbersome. These models allow for the reader to get a complete picture of what the plant does and how all the processes interact. These can be understood by people with little experience reading or creating flow diagrams. To remain uncluttered, the drawback of these diagrams is that they provide limited information about the the process units or the system in general.  
Creating a BFD is often one of the first steps in developing a chemical process. Different alternatives can be easily and inexpensively compared at an early stage using simple BFDs. Once alternatives have been chosen, the BFD serves as a starting point for a complete process flow diagram (PFD).
 
A BFD is a useful tool for reports, textbooks and presentations when a detailed process flow diagram is too cumbersome. These models allow for the reader to get an overall picture of what the plant does and how all the processes interact. These can be understood by people with little experience with reading or creating flow diagrams (Towler and Sinnott, 2013).
 
===Models===
===Models===
BFDs come in many forms and styles. They can be extremely simple or very detailed in their explanation of a process.  
BFDs come in many forms and styles. They can be extremely simple or very detailed in their explanation of a process.  
====I/O Diagrams====
====I/O Diagrams====
The simplest form of BFD, the I/O (input/output) Diagram provides the material streams entering and exiting the process. The diagram is modeled using arrows entering and exiting a process box to represent the inputs and outputs respectively.
The simplest form of BFD, the I/O (input/output) diagram (Biegler et al., 1997), provides the material streams entering and exiting the process. The diagram is modeled below using arrows entering and exiting a process box to represent the inputs and outputs, respectively.
===Block Flow Plant Diagram===
This model of flow diagram is used to explain the general material flows throughout an entire plant. They will be generalized to certain plant sectors or stages. These document would help orient workers to the products and important operation zones of a chemical facility.
===Block Flow Process Diagram===
This model will concentrate on a particular sector/area of a chemical plant. This would be a separate flow diagram that details what would have been present inside of one of the blocks in the plant diagram. These diagrams may be more or less complicated than the plant diagram but will focus on only a small sub-section of the overall process.
===Conventions===
There are several conventions regarding the construction of BFDs that are used in the engineering community. These conventions are recommendations for laying out a block flow process diagram:


1. Operations shown by blocks
[[File:Io_example.JPG|center|frame|Figure1. I/O Diagram]]


2. Major flow lines shown with arrows giving direction of flow
====Block Flow Plant Diagram====
This model of flow diagram is used to explain the general material flows throughout an entire plant. They will be generalized to certain plant sectors or stages. These documents would help orient workers to the products and important operation zones of a chemical facility (Peters and Timmerhaus, 2003).


3. Flow goes from left to right whenever possible
====Block Flow Process Diagram====
This model will concentrate on a particular sector/area of a chemical plant. This would be a separate flow diagram that details what would have been present inside of one of the blocks in the plant diagram. These diagrams may be more or less complicated than the plant diagram but will focus on only a small sub-section of the overall process (Peters and Timmerhaus, 2003).


4. Light stream (gases) towards the top of the block with heavy streams (liquids or solids) towards the bottom
===Conventions===
There are several conventions regarding the construction and format of BFDs that are commonly used in the engineering community. Some of the recommended conventions are:


5. Critical information unique to process supplied
# Operations/equipment are represented with blocks
# Material flows are represented with straight lines with arrows giving the direction of flow
# Lines are horizontal and/or vertical, with turns at 90 degree angles
# Flows go from left to right whenever possible
# If lines cross, the horizontal line is continuous and the vertical line is broken
# Light streams (gases) are typically closer to the top of the BFD than are heavy streams (liquids or solids)
# Critical information unique to the process (such as a chemical reaction) is supplied
# A simplified material balance should be provided (Seider et al., 2004)


6. Lines are straight turning at 90 degree angles.  
==Example 1: Production of Benzene==
Toluene and hydrogen are used as [https://processdesign.mccormick.northwestern.edu/index.php/Define_product_and_feed feed stocks] for the production of benzene. The toluene and hydrogen are sent to a reactor, and the effluent is sent to a gas separator where the noncondensable gases are discharged from the system. The bottoms of the separator provides a liquid feed to a still where the lighter benzene gas is collected as the distillate and the bottom toluene draw is recycled back into the reactor. The BFD provided shows the reaction, the stream names, and the mass flow of the inlets and outlets. There are many components of this system (heat exchangers and pumps, etc.) that are not represented because they are not vital for an understanding of the main features of the process.
[[File:Benzene_prod_example.JPG|center|frame|Figure 2. Block flow process diagram for the production of benzene (Turton et al., 2012)]]


7. If lines cross, the horizontal line is continuous and the vertical line is broken
==Example 2: Oxidation of Propene to Acrylic Acid==
Propane is dehydrogenated to propene, which is oxidized to acrolein first and then further oxidized to acrylic acid. The products are separated in the end to give acrylic acid and various by-products. The by-products are further separated to yield a propane recycle stream. Each block in the BFD provided shows what each individual unit is doing along every step of the process. It also shows inlet and outlet streams, as well as byproducts and recycle streams. A BFD in this style is helpful so that all materials can be seen, every step of the process is outlined, and byproducts can be taken into consideration for waste removal/treatment.
[[File:Acrylicacidexample.JPG|center|frame|Figure 3. Block flow process diagram for the production of acrylic acid (Khoobiar et al., 1984)]]


8. Simplified material balance should be provided
==References==


==Example 1: Acrylic Acid From Propylene by Catalytic Oxidation==
Biegler LT, Grossmann IE, Westerberg AW. Systematic Methods of Chemical Process Design. Upper Saddle River: Prentice Hall; 1997.
Block Flow Diagram Example 1: Acrylic Acid From Propylene by Catalytic Oxidation
 
==Example 2: Isopropyl Alcohol from Propylene by Direct Hydration==
Block Flow Diagram Example 2: Isopropyl Alcohol from Propylene by Direct Hydration
 
 
==Example 3: Caprolactam From Toluene==
Block Flow Diagram Example 3: Caprolactam From Toluene
 
 
==References==


* Towler, G.P. and Sinnot, R. (2012). ''Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design.''Elsevier.
Khoobiar S, Porcelli R, inventor; The Halcon Sd Group Inc., assignee. Conversion of propane to acrylic acid. European patent EP0117146. 1984 May 5.


* Biegler, L.T., Grossmann, L.E., and Westerberg, A.W. (1997). ''Systematic Methods of Chemical Process Design.'' Upper Saddle River: Prentice-Hall.
Peters MS, Timmerhaus KD. Plant Design and Economics for Chemical Engineers. 5th ed. New York: McGraw Hill; 2003.


* Peters, M.S. and Timmerhaus, K.D. (2003). ''Plant Design and Economics for Chemical Engineers, 5th Edition.'' New York: McGraw-Hill.
Seider WD, Seader JD, Lewin DR. Process Design Principles: Synthesis, Analysis, and Evaluation. 3rd ed. New York: Wiley; 2004.


* Seider, W.D., Seader, J.D., and Lewin, D.R. (2004). ''Process Design Principles: Synthesis, Analysis, and Evaluation.'' New York: Wiley.
Towler G, Sinnott R. Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design. 2nd ed. Boston: Elsevier; 2013.


* Turton, R.T., Bailie, R.C., Whiting, W.B., and Shaewitz, J.A. (2003). ''Analysis, Synthesis, and Design of Chemical Processes'' Upper Saddle River: Prentice-Hall.
Turton R, Bailie RC, Whiting WB, Shaewitz JA, Bhattacharyya D. Analysis, Synthesis, and Design of Chemical Processes. 4th ed. Upper Saddle River: Prentice-Hall; 2012.

Latest revision as of 04:23, 2 March 2015


Author: Nick Pinkerton, Karen Schmidt, and James Xamplas (ChE 352 in Winter 2014)

Steward: David Chen, Fengqi You

Date Presented: February 2, 2014


Introduction

A block flow diagram (BFD) is a drawing of a chemical processes used to simplify and understand the basic structure of a system. A BFD is the simplest form of the flow diagrams used in industry. Blocks in a BFD can represent anything from a single piece of equipment to an entire plant. For a complex process, block flow diagrams can be used to break up a complicated system into more reasonable principle stages/sectors.

Overview

Uses

Creating a BFD is often one of the first steps in developing a chemical process. Different alternatives can be easily and inexpensively compared at an early stage using simple BFDs. Once alternatives have been chosen, the BFD serves as a starting point for a complete process flow diagram (PFD).

A BFD is a useful tool for reports, textbooks and presentations when a detailed process flow diagram is too cumbersome. These models allow for the reader to get an overall picture of what the plant does and how all the processes interact. These can be understood by people with little experience with reading or creating flow diagrams (Towler and Sinnott, 2013).

Models

BFDs come in many forms and styles. They can be extremely simple or very detailed in their explanation of a process.

I/O Diagrams

The simplest form of BFD, the I/O (input/output) diagram (Biegler et al., 1997), provides the material streams entering and exiting the process. The diagram is modeled below using arrows entering and exiting a process box to represent the inputs and outputs, respectively.

Figure1. I/O Diagram

Block Flow Plant Diagram

This model of flow diagram is used to explain the general material flows throughout an entire plant. They will be generalized to certain plant sectors or stages. These documents would help orient workers to the products and important operation zones of a chemical facility (Peters and Timmerhaus, 2003).

Block Flow Process Diagram

This model will concentrate on a particular sector/area of a chemical plant. This would be a separate flow diagram that details what would have been present inside of one of the blocks in the plant diagram. These diagrams may be more or less complicated than the plant diagram but will focus on only a small sub-section of the overall process (Peters and Timmerhaus, 2003).

Conventions

There are several conventions regarding the construction and format of BFDs that are commonly used in the engineering community. Some of the recommended conventions are:

  1. Operations/equipment are represented with blocks
  2. Material flows are represented with straight lines with arrows giving the direction of flow
  3. Lines are horizontal and/or vertical, with turns at 90 degree angles
  4. Flows go from left to right whenever possible
  5. If lines cross, the horizontal line is continuous and the vertical line is broken
  6. Light streams (gases) are typically closer to the top of the BFD than are heavy streams (liquids or solids)
  7. Critical information unique to the process (such as a chemical reaction) is supplied
  8. A simplified material balance should be provided (Seider et al., 2004)

Example 1: Production of Benzene

Toluene and hydrogen are used as feed stocks for the production of benzene. The toluene and hydrogen are sent to a reactor, and the effluent is sent to a gas separator where the noncondensable gases are discharged from the system. The bottoms of the separator provides a liquid feed to a still where the lighter benzene gas is collected as the distillate and the bottom toluene draw is recycled back into the reactor. The BFD provided shows the reaction, the stream names, and the mass flow of the inlets and outlets. There are many components of this system (heat exchangers and pumps, etc.) that are not represented because they are not vital for an understanding of the main features of the process.

Figure 2. Block flow process diagram for the production of benzene (Turton et al., 2012)

Example 2: Oxidation of Propene to Acrylic Acid

Propane is dehydrogenated to propene, which is oxidized to acrolein first and then further oxidized to acrylic acid. The products are separated in the end to give acrylic acid and various by-products. The by-products are further separated to yield a propane recycle stream. Each block in the BFD provided shows what each individual unit is doing along every step of the process. It also shows inlet and outlet streams, as well as byproducts and recycle streams. A BFD in this style is helpful so that all materials can be seen, every step of the process is outlined, and byproducts can be taken into consideration for waste removal/treatment.

Figure 3. Block flow process diagram for the production of acrylic acid (Khoobiar et al., 1984)

References

Biegler LT, Grossmann IE, Westerberg AW. Systematic Methods of Chemical Process Design. Upper Saddle River: Prentice Hall; 1997.

Khoobiar S, Porcelli R, inventor; The Halcon Sd Group Inc., assignee. Conversion of propane to acrylic acid. European patent EP0117146. 1984 May 5.

Peters MS, Timmerhaus KD. Plant Design and Economics for Chemical Engineers. 5th ed. New York: McGraw Hill; 2003.

Seider WD, Seader JD, Lewin DR. Process Design Principles: Synthesis, Analysis, and Evaluation. 3rd ed. New York: Wiley; 2004.

Towler G, Sinnott R. Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design. 2nd ed. Boston: Elsevier; 2013.

Turton R, Bailie RC, Whiting WB, Shaewitz JA, Bhattacharyya D. Analysis, Synthesis, and Design of Chemical Processes. 4th ed. Upper Saddle River: Prentice-Hall; 2012.