Separation processes: Difference between revisions
Line 93: | Line 93: | ||
===Flotation=== | ===Flotation=== | ||
Flotation is a process designed for specific solid-solid mixtures. It works by generating gas bubbles in a liquid that attach to selected solid particle. Afterwards, the particles rise to the liquid surface where they are removed by an overflow weir or mechanical scraper. The separation depends on the surface properties of the particles and its preference to attach to the gas bubbles. To meet the necessary requirements of the flotation process, a number of additives can be used to control things like the pH of the liquid-solid mixture, the activity of the solid surface, and the froth that can assist in separation. The bubbles can be produced by gaseous dispersion, dissolution, or electrolysis of the liquid. | |||
===Centrifugation=== | ===Centrifugation=== | ||
===Drying=== | ===Drying=== |
Revision as of 03:41, 10 February 2014
Title: Separation Processes
Authors: Nick Pinkerton, Karen Schmidt, and James Xamplas
Date Presented: February 9, 2014 /Date Revised: February 1, 2014
Introduction
Essentially all chemical processes require the presence of a separation stage. Most chemical plants comprise of a reactor surrounded by many separators. Separators have a countless number of jobs inside of a chemical plant. A separator can process raw materials prior to the reaction, remove incondensable gases, remove undesired side products, purify a product stream, recycle materials back into the process, and many other jobs that are essential to the process.
Chemical engineers must understand the science of separation and the variety of ways that separation can take place. There are many ways to perform a separation some of these including: distillation, absorption, stripping, and extraction. The science of separation revolves around the presence of two phases that are in contact and equilibrium [1].
Theory
Vapor-Liquid Equilibrium
Separation processes are based on the theory of vapor-liquid equilibrium. This theory states that streams leaving a stage in a separation process are in equilibrium with one another. The idea of equilibrium revolves around the idea that when there is vapor and liquid in contact with one another they are in constantly vaporizing and condensing. Different components in the mixture will condense and vaporize at different rates. There are three types of equilibrium conditions that can be subdivided into thermal, mechanical and chemical potential categories. These separate equilibrium states are given as:
Distillation
Flash Distillation
Flash Distillation is one of the simpler separation processes to be employed in a chemical plant. The main premise of flash distillation is that a portion of a liquid feed stream vaporizes in a flash chamber or a vapor feed condenses. Vapor-liquid equilibrium will cause the vapor phase and the liquid phase to have different compositions. The more volatile component of the mixture will compose of a larger portion of the vapor. This simple separation is easy to manufacture but does not result in large degrees of separation.
Flash distillation requires a feed stream that is pressurized and heated and then passed through a valve into a flash drum. The large pressure drop across the valve will result in a partial vaporization of the fluid. Vapor will be removed overhead from the flash drum while the remaining liquid will collect at the bottom of the drum and be removed. Most flash drums will contain an entrainment eliminator which is a screen that prevents liquid from being carried into the vapor effluent. Figure one shows a simple overview of the flash distillation process. As shown, there is a heater that flows into a let down valve where the two phase flow begins. Variables y and x are the mole fractions of the more volatile component in the vapor and liquid effluents respectively.
Column Distillation
Distillation columns are the most widely used separation technique used in the chemical industry, accounting for approximately 90% of all separations [1]. Distillations in columns consist of multiple trays that each act at their own equilibrium conditions. Large columns are able to perform complete separations of binary mixtures as well as more complex multi-component mixtures.
McCabe-Thiele Diagrams
Stages
Columns are separated into stages by the presence of trays. These trays allow for vapor-liquid contact and equilibrium to occur. Typically, the more stages in a column, the larger separation that can be achieved. There are many different types of trays that can be used in a column.
Sieve Trays
The simplest tray type is the sieve tray which is a sheet of metal with holes punched into it to allow vapor flow. Sieve trays can have different hole patterns and sizes that will affect the tray efficiency and flow rates.
Bubble-Cap Trays
Bubble-Cap trays consist of a weir around each hole in the tray which is covered with a cap that has holes or slots to allow vapor passage. Entrainment is about three times larger than a sieve tray. Bubble capped trays require larger tray spacing than sieve tray design. Bubble-cap tray have been known to have problems with coking, polymer formation, or high fouling mixtures. Recently, very few new bubble-cap columns are being built due to the expense and marginal benefits. However, engineers will likely encounter bubble-cap columns still currently in operation.
Flow Patterns
Cross flow columns are the most common pattern for distillation columns. For liquid flows between 50 and 500 Gal/min, a cross flow column is appropriate. When liquid flow is increased above 500 Gal/min, an engineer should consider designing a double pass or multi-pass column. This will reduce the liquid gradient on the tray and reduce the downcomer loading [1].
Column Sizing
Column height will be dependent on the amount of trays required and the spacing between the trays. Normally, tray spacing of 0.15 m to 1 m is used. For columns, above 1 meter in diameter, 0.5 m can be used as an initial estimate.
Column diameter is influenced by the vapor flow rate in the column. The trays can not have excess liquid entrainment or high pressure drops; therefore, vapor velocity in the column must be maintained at a reasonable level.
An equation based on the Souders and Brown equation can be used as an estimate for the max allowable superficial vapor velocity,
where is the plate spacing in meters.
Column diameter, , can then be estimated using the relation,
where \hat{V_w} is the maximum vapor rate in kg/s [2].
Absorption
An alternative to distillation for separating solutes from gas streams is absorption. The gas mixture comes into contact with a liquid solvent that readily absorbs the undesirable components from the gas stream, purifying the gas stream. This separation process is determined by the inputs of the liquid flow rate, temperature, and pressure. The absorption factor, which can be determined mathematically, determines how readily a component will absorb in the liquid phase. Higher absorption factors result in higher absorptivity into the liquid and a decrease in the number of trays required for separation, however a diminishing return occurs after the absorbing factor is greater than 2.0. An absorption factor of 1.4 is most commonly used.
Stripping
This process separates solutes from solvents (usually after absorption), to purify the solvent so that it can be recycled to an absorber. Stripping will depend on the vapor and liquid flow rates, as well as the temperature and pressure of the column. There is a temperature drop down the column, so columns generally have either an increased operating temperature or decreased operating pressure. The stripping factor will determine how much solute will be stripped from the liquid into the vapor phase. The usual range for the stripping factor is between 1.2 and 2.0, with a stripping factor of 1.4 being most economic.
Other Separation Processes
Extraction
Liquid-liquid extraction is a process for components with overlapping boiling points and azeotropes. The process requires a solvent such that some of the components of the mixture are soluble, and then the components will be separated based on this solubility in the liquid. This process can operate at moderate temperatures and pressures, so is not very energy intensive. However, a distillation column is required to extract the solvent for recycle. More recently, supercritical fluids have replaced liquid solvents in some processes for L/L extraction, due to the solute’s ability to more rapidly diffuse through them. The issue with these fluids, however, is that they must be operated at extremely high pressures and temperatures, increasing both capital and operating expenses of the process.
Crystallization
This process recovers solutes that have been dissolved in solution. The resulting product is in the solid phase. Depending on the material properties of the solute and solvent, the solute is recovered by precipitation after cooling, removal of solvent, or adding precipitating agents. Crystallizers are designed based on phase equilibria, solubilities, rates and amounts of nuclei generated, and rates of crystal growth. Every crystallization process is a unique system, so plant evaluation is usually required before complete implementation. Crystallization can be performed in both batch and continuous processes, and design features can control crystal size to an extent.
Membrane Separation
This separations process uses selectively permeable membranes to separate components in a mixture. Typically, one of the components will freely pass through the barrier while the other components will not. The stream that passes through the membrane is the permeate and the stream that does not pass is the retentate. The driving force behind this separation is a pressure gradient. Membrane separation is beneficial because it can separate mixtures at the molecular and small particle level. Furthermore, there is no phase change required so the energy input is low. Limitations of this process include achieving high product purity, incompatibility with certain stream components, low operating temperature, and low flow rates. Although membrane separation is generally not scaled up, examples of scaled-up membrane separation include seawater desalination and hydrogen recovery.
Adsorption
Adsorption involves an adsorbent and adsorbate. The adsorbent is typically a solid, and will typically separate the adsorbate from the stream. This process usually includes a desorption step that regenerates the adsorbent for further use. Raising the temperature or increasing the concentration of the adsorbate can reverse the adsorption process. Although the recycle of the adsorbent is a very economic design feature, the downside of this step is that it results in a cyclic process, which introduces complexity to the overall process. Industrial applications of this process are for bulk separations and gas purification. The adsorption/desorption process in these situations involves a large amount of heat transfer, which design engineers must take into account when sizing and selecting equipment material.
External Field/Gradient Separation
These separations use external force fields or temperature gradients to separate responsive molecules or ions. The use of these processes is fairly limited to a few specialized industrial applications.
Settling and Sedimentation
In settling processes, solid particles or liquid drops are separated from a stream by gravity. The stream can be in either the liquid or gas phase. For vapor-liquid mixtures, flash drums are generally used to separate the mixture. The velocity of the vapor must be less than the settling velocity of the liquid drops for this separation to occur. For liquid-liquid separation, the horizontal velocity of the fluid must be low enough to allow the low-density droplets to rise to the interface and the high-density droplets to move away from the interface and coalesce. In sedimentation, the result of the process is a more concentrated slurry. Typically a flocculating gent is used to aid in the settling process. One way to perform this separation is to use a cone-shaped tank with a slowly revolving rake that scrapes and moves the thickened slurry to the center of the cone for removal.
Flotation
Flotation is a process designed for specific solid-solid mixtures. It works by generating gas bubbles in a liquid that attach to selected solid particle. Afterwards, the particles rise to the liquid surface where they are removed by an overflow weir or mechanical scraper. The separation depends on the surface properties of the particles and its preference to attach to the gas bubbles. To meet the necessary requirements of the flotation process, a number of additives can be used to control things like the pH of the liquid-solid mixture, the activity of the solid surface, and the froth that can assist in separation. The bubbles can be produced by gaseous dispersion, dissolution, or electrolysis of the liquid.
Centrifugation
Drying
Evaporation
Filtration
References
- Wankat, P.C. (2012). Separation Process Engineering. Upper Saddle River: Prentice-Hall.
- Towler, G.P. and Sinnot, R. (2012). Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design.Elsevier.
- Biegler, L.T., Grossmann, L.E., and Westerberg, A.W. (1997). Systematic Methods of Chemical Process Design. Upper Saddle River: Prentice-Hall.
- Peters, M.S. and Timmerhaus, K.D. (2003). Plant Design and Economics for Chemical Engineers, 5th Edition. New York: McGraw-Hill.
- Seider, W.D., Seader, J.D., and Lewin, D.R. (2004). Process Design Principles: Synthesis, Analysis, and Evaluation. New York: Wiley.
- Turton, R.T., Bailie, R.C., Whiting, W.B., and Shaewitz, J.A. (2003). Analysis, Synthesis, and Design of Chemical Processes Upper Saddle River: Prentice-Hall.