Heat exchanger: Difference between revisions
Alex Valdes (talk | contribs) No edit summary |
Alex Valdes (talk | contribs) No edit summary |
||
Line 9: | Line 9: | ||
==Introduction== | ==Introduction== | ||
Heat exchangers are necessary process units that are part of any detailed process flow diagram. Process streams commonly interact through heat exchangers in order to save money on heating and cooling utilities. Furthermore, the surface area of the heat exchanger is proportional to the amount of heat that can be transferred and is the most indicative cost component of a heat exchanger. Therefore, all of the commercial simulators include models for heaters, coolers, heat exchangers, fired heaters,and air coolers [1]. Typically, the only inputs necessary for heat exchanger models to converge are properly specified inlet streams (flow rate, temperature, pressure, composition), the pressure drop of the shell and tube, and the outlet temperatures (or the duty). | Heat exchangers are necessary process units that are part of any detailed process flow diagram. Process streams commonly interact through heat exchangers in order to save money on heating and cooling utilities. Furthermore, the surface area of the heat exchanger is proportional to the amount of heat that can be transferred and is the most indicative cost component of a heat exchanger. Therefore, all of the commercial simulators include models for heaters, coolers, heat exchangers, fired heaters,and air coolers [1]. Typically, the only inputs necessary for heat exchanger models to converge are properly specified inlet streams (flow rate, temperature, pressure, composition), the pressure drop of the shell and tube, and the outlet temperatures (or the duty). | ||
Model simulators such as HYSYS are extremely useful for engineers to quickly estimate capital costs and utility requirements, but there a few common problems that arise when using heat exchangers in these programs. When heat exchangers are used with streams that go to earlier stages of the process, an information loop occurs and the program is less likely to converge. Many times the process design requires a later process stream, such as the bottoms of a distillation column, to heat an earlier stream, such as the feed to the same column [1]. Another problem arises if the specifications of the heat exchanger are impossible, but the model still converges with physically unreasonable results - such as a temperature cross. To avoid these problems, it is good practice to use utility heaters and coolers instead of heat exchangers to get an idea of the required heat load and parameters of an exchanger. The heaters and coolers are also useful for obtaining initial guesses of outlet temperatures and pressure drops. After that information is obtained, the designer will have a much idea of the feasibility of a heat exchanger and how the process streams can interact. | |||
=Tutorial for Aspen HYSYS V8.0= | =Tutorial for Aspen HYSYS V8.0= |
Revision as of 21:55, 6 February 2015
Author: Alex Valdes [2015]
Stewards: Jian Gong, and Fengqi You
Introduction
Heat exchangers are necessary process units that are part of any detailed process flow diagram. Process streams commonly interact through heat exchangers in order to save money on heating and cooling utilities. Furthermore, the surface area of the heat exchanger is proportional to the amount of heat that can be transferred and is the most indicative cost component of a heat exchanger. Therefore, all of the commercial simulators include models for heaters, coolers, heat exchangers, fired heaters,and air coolers [1]. Typically, the only inputs necessary for heat exchanger models to converge are properly specified inlet streams (flow rate, temperature, pressure, composition), the pressure drop of the shell and tube, and the outlet temperatures (or the duty).
Model simulators such as HYSYS are extremely useful for engineers to quickly estimate capital costs and utility requirements, but there a few common problems that arise when using heat exchangers in these programs. When heat exchangers are used with streams that go to earlier stages of the process, an information loop occurs and the program is less likely to converge. Many times the process design requires a later process stream, such as the bottoms of a distillation column, to heat an earlier stream, such as the feed to the same column [1]. Another problem arises if the specifications of the heat exchanger are impossible, but the model still converges with physically unreasonable results - such as a temperature cross. To avoid these problems, it is good practice to use utility heaters and coolers instead of heat exchangers to get an idea of the required heat load and parameters of an exchanger. The heaters and coolers are also useful for obtaining initial guesses of outlet temperatures and pressure drops. After that information is obtained, the designer will have a much idea of the feasibility of a heat exchanger and how the process streams can interact.
Tutorial for Aspen HYSYS V8.0
Properties Section:
- Open Aspen HYSYS and create a New Case under File menu.
- Create a component list by adding all components present in the process.
- Select a thermodynamic fluid package that is applicable to the process (see Property Package article for more details on options)
Enter Simulation Section:
- In the model palette, there are a few options for heating/cooling units. Use a Heater or a Cooler to change the temperature of one process stream using a utility. Use a Heat Exchanger for two process streams exchanging heat, thereby changing the temperature of each. The following steps are for a Heat Exchanger, but the steps are similar for a Heater or Cooler.
References
- G.P. Towler, R. Sinnott. Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design. Elsevier, 2012.