Ethanol to Ethylene (B1): Difference between revisions
No edit summary |
|||
Line 60: | Line 60: | ||
[[File:Streams_B1.png|1200px]] | [[File:Streams_B1.png|1200px]] | ||
=Appendix IV - Energy | =Appendix IV - Energy Table= | ||
[[File:Energy_B1.png]] | |||
=Appendix V - Economics= | =Appendix V - Economics= | ||
[[File:Econsummary_B1.png|center]] <br> | [[File:Econsummary_B1.png|center]] <br> |
Revision as of 03:57, 14 March 2015
Executive Summary
Introduction
Technical Approach
Process Flowsheet
Economic Analysis
Process Alternatives/Recommendations
Conclusion
References
[1] American Chemistry Council. Production of chemicals and plastics in the U.S. in 2013, by type (in 1,000 metric tons). In Statista - The Statistics Portal. August 2014. Available at http://www.statista.com/statistics/299725/total-us-plastics-and-chemicals-shipments-by-type/, Accessed January 15, 2015. – Relative proportions of plastics production.
[2] DuPont Nevada Site Cellulosic Ethanol Facility [Internet]. DuPont Chemical; c2012-2015 [cited 11 Mar. 2015]. Available from: http://biofuels.dupont.com/cellulosic-ethanol/nevada-site-ce-facility/. -- Information on ethanol production in Iowa.
[3] Designing Ethylene Plants. Ethylene [Internet]. Technip; 2014 [cited 13 Mar. 2015]. Available from: http://www.technip.com/en/our-business/onshore/ethylene -- Plant size ranges.
[4] Suppes GJ. Selecting Thermodynamic Models for Process Simulation of Organic VLE and LLE Systems. The University of Missouri-Columbia, Dept of Chemical Engineering. [cited 13 Mar. 2015]. -- Use of NRTL in alcohol separations.
[5] ASPENtech. Appendix A - Property Methods and Calculations. Simulation Basics; A-3 - A-26. 2014.
[6] 190 Proof Ethanol: Technical Data Sheet [Internet]. Decon Labs Inc; 2012 [cited 13 Mar. 2015]. Available from: http://www.deconlabs.com/tds/ETHANOL%20190%20%20PROOF.pdf -- Information regarding 95% ethanol
[7] Hadawey A, Ge Y, Tassou TSA. Energy Savings Through Liquid Pressure Amplification In A Dairy Plant Refrigeration System. The Centre for Energy and Built Environment Research [cited 13 Mar. 2015].
[8] Methane (Chemical Compound). 2015. Encyclopædia Britannica Online. [cited 13 Mar. 2015] Available from: http://www.britannica.com/EBchecked/topic/378264/methane -- Composition of Methane
[9] Composition of Air [Internet]. Engineering Toolbox; [cited 13 Mar. 2015]. Available from: http://www.engineeringtoolbox.com/air-composition-d_212.html. -- Composition of air.
[10] Summary of the Clean Air Act, 2015. United States Environmental Protection Agency. [cited 13 Mar. 2015] Available from: http://www2.epa.gov/laws-regulations/summary-clean-air-act -- Emissions requirements of chemical plants.
[11] Zhang M, Yu Y. Dehydration of Ethanol to Ethylene. Industrial Engineering and Chemical Research. 2013; 52:9505-9514. – Technical information on ethanol to ethylene conversion via dehydration.
[12] AspenTech. Aspen HYSYS Help File v8.0. Aspen Technology, Inc. 2012. - Aspen HYSYS help file used for troubleshooting and assistance on economic analysis.
[13] Towler G, Sinnott R. Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design. 2nd ed. Boston: Elsevier; 2013. -- General Reference Book
[14] Barrocas H, Baratelli F, inventors; Petroleo Brasileiro S.A., assignee. Process for dehydration of a low molecular weight alcohol. US patent 4,396,789 A. August 2, 1983. - Primary background for process design.
[15] Tsao U, Zasloff HB, inventors; The Lummus Company, assignee. Production of ethylene from ethanol. US patent 4,134,926. January 16, 1979. – Patent for catalytic dehydration of ethylene in a fluidized bed reactor.
[16] Morschbacker, A. Bio-Ethanol Based Ethylene. Polymer Reviews. 2009; 49:79-84. – Overview of bioethanol dehydration process development.
[17] Fan D, Dai DJ, Wu HS. Ethylene Formation by Catalytic Dehydration of Ethanol with Industrial Considerations. Materials. 6, 101-115. doi: 10.3390/ma6010101. - Comparison of types of catalysts used in the dehydration of ethanol and current research into new catalysts.
[18] Chen G, Li S, Jiao F, Yuan Q. Catalytic dehydration of bioethanol to ethylene over TiO2/γ-Al2O3 catalysts in microchannel reactors. Catal. Today 2007, 125, 111–119. - Paper introducing research on modified alumina catalyst for ethanol dehydration.
[19] Jumonville, J. Tutorial on Cryogenic Turboexpanders. Proceedings of the Thirty-Ninth Turbomachinery Symposium; 2010 Oct 4-7; Houston, TX. Houston: Texas A&M University; 2010. -- Use of turboexpander for cryogenic separations
[20] Today in Energy - Daily Prices. US Energy Information Administration website. http://www.eia.gov/todayinenergy/prices.cfm. Accessed March 3rd 2015. - Bulk market price for 95% ethanol.
[21] Weddle, N. ICIS Pricing: Ethylene (Europe). Reed Business Limited. January 10 2014. - Bulk market price for chemical grade ethylene.
Appendix I - Process Flow Diagram
Appendix II - HYSYS Simulation
Appendix III - Material Streams
Appendix IV - Energy Table
Appendix V - Economics