Drop-in Hydrogen Fueling (2014)
Authors: Alex Chandel, Eric Jiang, Minwook Kim, Todor Kukushliev, William Lassman (ChE 352 in Winter 2014)
Steward: David Chen, Fengqi You
Date Presented: Winter 2014
Executive Summary
With ongoing energy crisis, constant efforts are made to reach a sustainable energy. Major attention nowadays has been to shift the heavy demand of petroleum fuel to natural gas. Big effort has been made to make such a shift into a reality by making noticeable improvements in the fuel cell vehicle. To facilitate the shift, proper and reliable fueling station for fuel cell vehicle is essential.
The report proposes a design for a portable hydrogen station that can maximize the revenue and therefore facilitate a hydrogen fuel market. The stations can be installed in places where the demand is saturated. Also, when the demand falls low, the portable station can be transferred to different place where the hydrogen demand is higher. The fueling module consists of a compressor, a storage vessel, a dispensing module, and necessary valving systems. The design is kept as minimalistic to minimize the capital cost yet enhance the portability. The site chosen was 2580 S Schaefer Highway in Detroit, Michigan. The site has commodious space of 280x100 ft. and necessary utilities and hookups available to support the designed station along with the car wash and/or oil change center. Despite the portability, the infrastructure will accommodate the state-of-the-art fueling dispensing features.
Economic analysis was made without accounting for the tax and restructuring cost. The initial cost of the actuating the design will cost $189,000 in initial capital cost. The sales revenue is estimated to be around $324,000; the annual cost amounts to be $296,355 per year. The income of a single station is $27,645 which will set the payback period to be 8 years.
Introduction
Around the turn of the 21st century, engineering and design were fundamentally changed with the advent of energy and environmental sustainability. With energy prices and harsher standards set by regulating organizations, the modern engineer emphasizes carbon footprint and sustainable design in developing new products and systems. One key technology that is now known to be unsustainable is petroleum, especially as used for automobile fuels. The rising cost of gasoline has motivated the investigation of alternative technologies, such as hydrogen, to be used to power automobiles.
The objective of this study was to design a mobile hydrogen refueling module for high-pressure hydrogen vehicles. The design was required to fulfill the following criteria:
- Dispense 5kg H2 gas in under five minutes
- Refuel vehicles up to 70 MPa
- Support two simultaneous refueling
- Support a 100kg/day demand, plus an additional 48 hours in the event of upstream equipment failure
- Mobile: able to disassemble and reassemble the entire process in under 7 days
- Fit inside a standard ISO container
- Capital investment that is a fraction of 2-4 million USD
Process Narrative
To deliver hydrogen gas to vehicles, the fueling module requires the following equipment: a means to receive delivered hydrogen or capacity for generating it on site, a compressor capable of compressing the hydrogen to the requisite storage conditions, a storage tank, a dispensing system, as well as HVAC and utility equipment and safety equipment (Figure 2-1).
Hydrogen Delivery
We currently recommend buying hydrogen as the main method for procurement of hydrogen by simply purchasing it from existing suppliers at market price. This will avoid capital costs of the upstream production units, which may lower the price of the hydrogen dispensed to clients. Currently, pressurized hydrogen may be purchased at a market price of roughly $7 per kilogram from existing suppliers with the added benefits of requiring fewer stages in the mobile fueling station compressor. In this case, the compressor would only require only two stages to supply hydrogen at the desired dispensing pressure, and so less time to move and construct the station itself. We currently desire to purchase hydrogen gas from a supplier of industrial gas, Praxair. Praxair’s primary method of delivery is by truck, so it will be ideal to choose locations close by Praxair distribution factories and major highways. Our design will allow our storage equipment to directly hook up to the delivery tank of Praxair and allow dispensing to occur.
Two alternatives were also explored for the procurement of hydrogen for the use in the mobile fueling station: steam reforming of methane and water electrolysis. However, these two alternatives are accompanied by significant capital costs, with steam reforming accompanied with complications with the mobility aspect of any ultimate design scheme. Steam reforming of methane utilizes natural gas as a feedstock. Because natural gas is inexpensive, this is the most economically advantageous feedstock for gaseous hydrogen. The hydrogen produced in this manner would then need to be pressurized from atmospheric pressure to the desired dispensing pressures, which would also increase the stages of the compressor chosen to achieve the pressurization. This same problem arises in producing hydrogen through water electrolysis, where hydrogen and oxygen gas are non-spontaneously produced from pure water by a running current. In addition, reforming also runs the disadvantage of being relatively large and immobile. Also, although hydrogen is usually suggested as a sustainable fuel, steam reforming also produces substantial amounts of CO2, creating an irony to “sustainable fuel”. The size and CO2 production inherent in steam reforming discourages its use in our dispensing station.
The electrolyzer requires pure water as a raw material, which will require purification units upstream in the production process. The HG-50 generator offered by HGenerators is capable of producing the specified 200 kg of H2 per day if it is running at full capacity, 24 hours a day. Initial pricing of the HG-50 is estimated at $1.49 million. Operation of this electrolyzer system consumes 215 kWh per hour of operation (costing around $600 per day assuming the average price of electricity in the US at $0.13 per kWh) and 41.667 L of water (costing around $0.40 assuming an average price of electiricty at $1.50 per 1000 gallon in the US). The most favorable selling point of electrolysis is the fact that no carbon dioxide is produced, resulting in more truly clean energy assuming if the source electricity is not dependent on carbon sources. While production of hydrogen would be ideal in our dispensing station due to advantages of sustainability and not requiring additional utilities outside of water and electricity, it is not currently recommended. Due the incredible high capital, which takes up more than half of our intended budget of $2 million, it is not recommended for hydrogen production.
Compressor
To compress the hydrogen gas to the designated storage conditions, 1000 bar, from the delivered pressure of 200 bar, at least 2 stages of compression are required. Hydrogen gas may turn various metal brittle with prolonged exposure, known as hydrogen embrittlement; therefore, the compressor needs to be designed with caution [1]. Because of the low flow rate requirement, a reciprocating compressor may be used [2.] The advantages of the reciprocating compressor are a broad range of pressure ranges, easy maintenance, and relatively cheap price. The downside of the reciprocating compressor is that it generates loud noise.
A suitable compressor that meets above design specification was chosen from the vendor Hydro-Pac.[3] A 20-hp compressor that are 94 inches long, 27 inches wide, and 52 inches tall will compress the incoming hydrogen of pressure 200 bar to 1000 bar and send it to the storage. The compressor has the adiabatic efficiency of 35% and generates the noise level of 95 decibels at 1- meter distance, which is under the legal limit. The cost of the compressor was estimated to be 95,000 dollars.
Had the hydrogen was supplied from the electrolysis generation method instead of purchasing directly from the vendor, the compression would require another compressor, intermittent storage, and additional piping systems, which altogether was quoted to be around 250,000 dollars from the same vendor, Hydro-Pac. Both the capital cost and the operating cost for the compressor phase will be higher for the generation method, which validate the decision to purchase the hydrogen directly from the vendor.
Storage
Once the hydrogen is brought to pressure, it passes into the primary storage tank. The storage conditions for the hydrogen gas were selected to be 100 MPa, and -70˚C for the following reasons: 100 MPa ensures that the tank can maintain a sufficient pressure differential to increase the speed at which is filled, and -70˚C ensures that upon expansion, the hydrogen gas is at a temperature range that complies with dispensing guidelines outlined in SAE J2601.
The design specification stated that the refueling module needs to be able to dispense 100kg of H2 fuel per day, with an additional 48 hours supply in event of compressor failure. In the event that the compressor fails before recharging the tank from dispensing its initial 100kg, the tank was therefore designed to have a deliverable capacity of 300kg.
In order to successfully fill an automobile’s fuel tank to full capacity, a minimum tank pressure of 70Mpa is required. Therefore the following equation was solved to determine the capacity of the tank: Where M is the total gravimetric capacity of the storage tank, is the gravimetric density of hydrogen gas at the specified storage conditions of 100MPa and -70˚C, and is the gravimetric storage capacity at 70MPa and -70˚C. The density was calculated using the Peng-Robinson Equation of State [4]. M was determined to be 1568.25kg, and the corresponding minimum volume was found to be 25m3.
One safety concern was loss of temperature control of the storage tank, and the resulting over pressurization of the storage tank. To accommodate this, a safety factor in the volume of the tank was designed, so the final volume was 26.5m3.
Common engineering practice is to fix length to diameter ratio of a high pressure storage tank to 1:5, and to use a horizontal storage tank for volumes of this capacity [5-6]. The corresponding inside diameter and height of the tank were determined to be 1.9 and 9.4 meters respectively.
The tank was then designed according to ASME BPV Section VIII standards [7-8]. The tank will be multilayered with three 5cm layers, manufactured out of A203 stainless steel for low temperature tolerance [9]. The heads of the tank are torispherical, with all welds spot checked. The tank will include a pressure and temperature sensor.
The tank will be coated with a thermo-regulating jacket which will have coolant from the HVAC pass through it as part of the refrigeration loop.
A detailed cost estimate was not obtained due to reluctance of vendors to generate a quote for this complicated tank for a student design competition. However, based on heuristics and comparisons to existing tanks, with some extrapolation, a cost estimate on the order of $100,000 was used in determining the capital investment associated with the storage tank [10, 14].
Much of the cost associated with the storage tank is due to the challenging storage conditions of -70 ˚C and 100 MPa. A number of alternatives were considered.
The first alternative was to use a metal hydride to chemisorb the hydrogen gas at low pressure. However, it was determined that metal hydride technologies are not mature enough to meet the storage needs of this project, primarily due to the high heat of adsorption; the adsorbate binds too strongly to the hydrogen and requires heating to drive the gas off when the gas is needed [11].
The second alternative considered was to use a Metal Organic Framework (MOF) as an adsorbate. The principal is similar to metal hydrides, but MOFs utilize physisorption instead of chemisorption to bind the hydrogen. For this reason, it suffers from the opposite setback, in that while MOFs can adsorb hydrogen at 77K, they do not perform well at higher temperatures [12].
The main benefit of using an adsorbate is the elimination of the compression stage, which constitutes the largest capital investment and most energy intensive step of preparing hydrogen for fuel conditions. Therefore, these adsorbate technologies make more sense as an onboard storage solution, and as current vehicles do not use these technologies, there is no gain to bypassing the compression stage. Therefore, the final decision to use high-pressure storage was made.
Dispensing System
Hydrogen fuel is dispensed to the consumer’s vehicle from the high-pressure storage tank via a system of three adiabatic expansion valves and three bypass valves. These are required by the J2601 standard, which stipulates that the pressure at the nozzle be no more than 20 MPa above the pressure of the vehicle’s tank. By selective expansion the fuel through either expansion or bypass valves, the hydrogen stream is reduced to a safe pressure for fueling. Additionally, since the storage tank is maintained at -70ºC, the fuel stream will heat up to -40ºC during expansion, providing pre-cooled hydrogen as recommended by J2601 and this contest.
HVAC System
The HVAC system will primarily serve to maintain the extreme cold required to properly store the gaseous hydrogen. This system will use GW Kent’s 10 ton Glycol Chiller, 3 Phase to circulate refrigerant R-22A (which is built-in upon purchase) through a jacket lining the main hydrogen storage unit and the pipes that send hydrogen to the dispensing units. Built for outdoor industrial processing needs, this chiller contains a stainless steel pump and insulated poly tank built into a single cabinet. It is designed to properly cycle such that the compressor runs only when necessary in an effort to conserve energy. Installation will only require water in, water out, and a single point connection to electricity [15].
The refrigerant associated with this HVAC unit removes 120,000 BTU/hr from its target, in this case the pressurized hydrogen [15]. Based on our heat duty calculations, this will require 0.4 m3 (or 400 kg) of R-22A. And, considering a typical HVAC efficiency 0.83 kW/ton (where a ton represents 12,000 BTU/hr), this system will require 8.3 kW to run continuously [16]. Accordingly, it will have the capacity to keep the compressed hydrogen at -70˚C.
Safety Equipment
The module incorporates the Sinorix™ Waterless Fire Extinguishing system from Siemens [17] that will be installed both in the canopy roofing the dispensing station as well as in the box that houses the main storage tank. This system has proven its ability to suppress a fire before it becomes large enough to warrant the activation of a traditional sprinkler system. Additionally, the Cerberus PRO fire alarm system from Siemens will be installed to serve both as an acoustical and visual warning [18]. It is estimated that these two units will cost approximately $4,100 [17-19]. If the electrical wiring system begins to contain too much current flowing through it (thus showing warning signs of shorting out), a Siemens Q330H circuit breaker will be connected to the system. It operates at 240 V and up to 30 A, and will cost approximately $100 [20]. In addition, lighting will be provided for hydrogen delivery at night as well as locks to access storage equipment.
Economic Analysis
Results
The primary financial measures of the success and feasibility of this project are whether the project will meet the 10-year payback period and the $2MM capital cost limit imposed by the contest. This proposal meets both of these criteria, costing only $189,000 in initial capital and paying back this initial investment in 8.0 years.
Discussion
The initial capital investment is limited to equipment and installation costs. The payback period is obtained by dividing this investment by the Net Income (NI), which is the sales revenue, less all costs. Direct costs of this proposal include to the cost of purchasing hydrogen and electricity usage of our equipment, while indirect costs include fixed yearly expenses such the rent on the station’s land and maintenance expenses. Sales revenue is estimated to yield $324,000, while annual costs amount to $296,355 per year. Thus, the yearly income of a single station is $27,645 (an ROI of 12.5%), and the payback period is 8.0 years.
Assumptions
For simplicity, this analysis ignores all taxes, restructuring costs, and other accounting complications, and thus Net Income is equal to Operating Income. This analysis also assumes the station sells 100 kilograms per day and operates 360 days per year. Because the gross profit is relatively low in magnitude, it is assumed that a corporation entering the hydrogen fuel market will construct this station, and only in areas where the consumer market is saturated.
Safety
Safety is an important aspect of our hydrogen dispensing station and care is taken to ensure the safety of our consumers and prolonged operation of our equipment. We will consider relevant codes and standards, identify potential risks with Failure Mode Analysis (FMEA), and derive appropriate safety procedure to mitigate risks.
Safety Codes and Standards
Safe operation and accident prevention are one of the primary objectives for design of hydrogen dispenser. In order to facilitate this objective, the safety codes and standards listed in the table below will be used to minimize injury to consumers, equipment, and infrastructure. The following safety considerations listed in this section will be our methods of adhering to the codes and standards to ensure the safety of our customers and equipment. A more exhaustive list of codes and standards can be found in reference [21].