Desalination - Team A

From processdesign
Jump to navigation Jump to search

Author: Pear Dhiantravan[2016], Reed Kolbe[2016], Sheridan Lichtor[2016], John Marsiglio[2016], Ellen Zhuang[2016]

Instructors: Fengqi You, David Wegerer

Winter 2016

Introduction

An increasing global water scarcity is fueling initiatives everywhere for clean water treatment, making efficient seawater desalination an attractive aim for chemical plant design. A 2015 market analysis found that the global desalination market earned revenues of $11.66 billion, and this number is expected to reach over $19 billion by 2019. Furthermore, the 17,000 desalination plants currently in operation are expected to double in number by 2020.1

As fresh water sources become increasingly scarce, strict water conservation measures are being observed. California is entering the fourth year of one of its most severe droughts on record. Cities are required to reduce their water usage by 35% to avoid facing fines.2 In lieu of these pressing conditions, California is looking for ways to provide more accessible fresh water to its citizens. This high demand for clean water motivated our choosing Richmond, CA as our plant location. At Richmond, the desalination plant can convert readily available seawater from the San Francisco Bay into fresh water. We propose to desalinate 50 million gallons of water per day to be sent to water treatment plants for potability. This aim is based on the capacity of the desalination plant in Carlsbad, California, which services a similar population.

The salinity of the water in the San Francisco bay is seasonal. During the dry seasons of summer and fall, salinity is high around 10 PSU (10,000 ppm) because water from the Pacific Ocean flows into the San Francisco Bay. During the wet winter season, fresh water from the rivers flows into the Bay, and salinity drops to around 2 PSU (2,000).3 Designed to meet the “worst case” scenario, our plant will process 398 million gallons of water per day with 10,000 ppm of salt to produce 50 million gallons of water with 1,000 ppm of salt. This gives a yield of 13%.

The desalination plant proposed consists of 18 flash stages in series. This report outlines our investigation of this potential water desalination plant, including design and optimization of the desalination process, an analysis of its energy consumption and environmental impacts, and a study of its economic implications.