Desalination - Team A

From processdesign
Revision as of 02:40, 12 March 2016 by Ezhuang (talk | contribs)
Jump to navigation Jump to search

Author: Pear Dhiantravan[2016], Reed Kolbe[2016], Sheridan Lichtor[2016], John Marsiglio[2016], Ellen Zhuang[2016]

Instructors: Fengqi You, David Wegerer

Winter 2016

Introduction

An increasing global water scarcity is fueling initiatives everywhere for clean water treatment, making efficient seawater desalination an attractive aim for chemical plant design. A 2015 market analysis found that the global desalination market earned revenues of $11.66 billion, and this number is expected to reach over $19 billion by 2019. Furthermore, the 17,000 desalination plants currently in operation are expected to double in number by 2020.1

As fresh water sources become increasingly scarce, strict water conservation measures are being observed. California is entering the fourth year of one of its most severe droughts on record. Cities are required to reduce their water usage by 35% to avoid facing fines.2 In lieu of these pressing conditions, California is looking for ways to provide more accessible fresh water to its citizens. This high demand for clean water motivated our choosing Richmond, CA as our plant location. At Richmond, the desalination plant can convert readily available seawater from the San Francisco Bay into fresh water. We propose to desalinate 50 million gallons of water per day to be sent to water treatment plants for potability. This aim is based on the capacity of the desalination plant in Carlsbad, California, which services a similar population.

The salinity of the water in the San Francisco bay is seasonal. During the dry seasons of summer and fall, salinity is high around 10 PSU (10,000 ppm) because water from the Pacific Ocean flows into the San Francisco Bay. During the wet winter season, fresh water from the rivers flows into the Bay, and salinity drops to around 2 PSU (2,000).3 Designed to meet the “worst case” scenario, our plant will process 398 million gallons of water per day with 10,000 ppm of salt to produce 50 million gallons of water with 1,000 ppm of salt. This gives a yield of 13%.

The desalination plant proposed consists of 18 flash stages in series. This report outlines our investigation of this potential water desalination plant, including design and optimization of the desalination process, an analysis of its energy consumption and environmental impacts, and a study of its economic implications.

Technical Approach

For the desalination step of our process, we selected a multistage flash (MSF) distillation process. Not only is MSF distillation a very viable method, but it is also the most common method, currently producing about 60% of the world’s desalinated water. MSF and reverse osmosis (RO) are the two major methods being used in large-scale desalination plants. Both processes require considerable amounts of energy. RO typically has a lower energy demand; however, the high impurity content of the Bay water would frequently necessitate membrane cleaning and/or exchange. Feed going through a RO system requires extensive pretreatment to remove biological organisms and other solids to control the pH and the chemical composition of the water. With the San Francisco Bay as our source of water, MSF is an attractive option because sediment and other large impurities can be separated from the feed before distillation occurs. Additionally, MSF distillation plants can be located near power plants and paired to their waste heat streams to conserve energy. This can reduce energy needs by half or two thirds, making MSF increasingly more practical. Due to the maintenance required in the RO system, the MSF distillation is the better option in terms of operation cost.4

A HYSYS model was built to simulate the MSF distillation section of the process, which spans after seawater pretreatment and before local potable water treatment. The model is used to simulate the distillation steps and to calculate necessary heating, cooling, and input flow rates to produce the required 50 million gallons of distillated water per day. For the simulation, the 398 million gallons per day of seawater feed stream is defined to be composed of 3.31 mol% sodium chloride (NaCl) and 96.69 mol% water. The percentage of NaCl is set to account for other ions and chemicals present after the pretreatment phase. NaCl alone is added to the HYSYS system due to the capabilities of the fluid package used to simulate this process, ElectroNRTL. The feed is set at 22°C, which is the approximate the temperature of the San Francisco Bay year round.

Process Design

Design Overview

The proposed desalination plant uses MSF distillation to convert the San Francisco Bay water to fresh water. The final process design contains 18 flash stages in series. Overall, 398 million gallons per day of of brackish water is converted to 50 million gallons per day of deionized water, a 13% yield. The production meets the required production rate of 50 million gallons of freshwater per day.

Seawater is taken in from the San Francisco Bay and mixed with the brine recycle stream produced downstream. The feed is then heated through a series of condensers and a heater. Distilled water vapor in each flash stage contacts the tubes carrying the seawater feed and condenses into a liquid stream by exchanging heat with the cooler seawater feed stream. The seawater is sent through a heater to increase its thermal energy before entering the first stage of the MSF. In each flashing stage, some of the water evaporates, leaving the salt behind. The freshwater vapors condense, as described above, and is collected and sent to a water treatment plant. The brine stream is split into the recycle stream and a waste stream, and the waste stream is diluted with fresh seawater before being discharged back into the bay.

A process flow diagram of the process is depicted in Appendix A.

Pretreatment

Sediment is removed to prevent solids from plugging the process downstream. Scaling of the process units leads to decreased efficiency and more frequent unplanned downtime, and is controlled for by lowering pH. Acidifying the water will also remove CO2, which is a corrosive gas. To control for oxygen, oxygen scavengers will be included in the system to sequester it. Sodium bisulfate will be used as the scavenger.5